DICARBOXYLIC ACIDS
Although the dicarboxylic acids do not occur in appreciable amounts as components of animal or vegetal lipids, they are in general important metabolic products of fatty acids since they originate from them by oxidation. Dicarboxylic acids are suitable substrates for preparation of organic acids for the pharmaceutical and food industries. Furthermore, they are useful materials for the preparation of fragrances, polyamides, adhesives, lubricants, and polyesters.
They have the general type formula
HOOC-(CH2)n-COOH
In vegetal, a great variety of molecular forms of dicarboxylic acids are found :
simple forms with a straight carbon chain or a branched chain
complex forms with a dicarboxylic acid and an alkyl side chain : alkylitaconates
1 – Simple forms of dicarboxylic acids
Short-chain dicarboxylic acids are of great importance in the general metabolism and up to n=3 they cannot be considered as lipids since their water solubility is important. The simplest of these intermediates is oxalic acid (n=0), the others are malonic (n=1), succinic (n=2) and glutaric (n=3) acids.
The other lipid members of the group found in natural products or from synthesis have a "n" value from 4 up to 21.
Adipic acid (n=4) : Despite its name     (in Latin adipis is fat), this acid (hexanedioic acid) is not a normal     constituent of natural lipids but is a product of oxidative rancidity (lipid     peroxidation). It was obtained  by Dieterle W et al. (Ber. 1884, 17, 2221)     by oxidation of castor oil with nitric acid (splitting of the carbon chain close to the OH     group). Synthesized in 1902 from tetramethylene bromide, it is now obtained by oxidation     of cyclohexanol or cyclohexane. It has several industrial uses in the     production of adhesives, plasticizers, gelatinizing agents, hydraulic     fluids, lubricants, emollients, as an additive in the manufacture of some form of     nylon (nylon-6,6), polyurethane foams, leather tanning, urethane and also as an acidulant in foods. Adipic     acid is used after esterification with various groups such as dicapryl, di(ethylhexyl),     diisobutyl, and diisodecyl.
     A graphic chart describing the biosynthesis of adipic acid via omega     oxidation may be found on the BioCarta     web site. 
Pimelic acid (n=5) : this acid (heptanedioic acid), from the Greek pimelh (pimele fat), as adipic acid, was isolated from oxidized fats. It was obtained in 1884 by Ganttner F et al. (Ber. 1884, 17, 2212) as a product of ricinoleic acid (hydroxylated oleic acid) from castor oil.
Suberic acid (n=6) : it was firstly produced by nitric     acid oxidation of cork (Latin suber) material and then from castor oil (Tilley     TG, Ann 1841, 39, 160). The oxidation of ricinoleic acid produces, by splitting at     the level of the double bond and at the level of the OH group, at the same time, suberic     acid (octanedioic acid) and the next homologue azelaic acid.
     Suberic acid was used in the manufacture of alkyd resins and in the synthesis of     polyamides leading to nylon.
Azelaic acid (n=7) : nonanedioic     acid is the best known dicarboxylic acid. Its name stems from the action of nitric acid (azote,     nitrogen, or azotic, nitric) oxidation of oleic or elaidic acid. It was detected     among products of rancid fats (Nicolet BH et al., J Ind Eng Chem 1916, 8, 416 and Nunn     L et al., Biochem J 1938, 32, 1974). Its origin explains for its presence in poorly     preserved samples of linseed oil and in specimens of ointment removed from Egyptian tombs     5000 years old (Banks A et al., Analyst 1933, 58, 265). Azelaic acid was prepared     by oxidation of oleic acid with potassium permanganate (Ganttner F et al., Ber. 1881,     14, 1545), but now by oxidative cleavage of oleic acid with chromic acid or by     ozonolysis. 
     Azelaic acid is used, as simple esters or branched-chain esters) in the manufacture of     plasticizers (for vinyl chloride resins, rubber), lubricants and     greases. Azelaic acid is now used in cosmetics (treatment of acne). It displays     bacteriostatic and bactericidal properties against a variety of aerobic and anaerobic micro-organisms present on acne-bearing skin. Azelaic acid was identified as a molecule that  accumulated at elevated     levels in some parts of plants and was shown to be     able to enhance the resistance of plants to infections (Jung HW et al.,     Science 2009, 324, 89). 
Sebacic acid  (n=8) : decanedioic acid was named     by Thenard LJ (1802) from the Latin sebaceus (tallow candle) or sebum (tallow) in reference     to its use in the manufacture of candles. Thenard LJ isolated this compound     from distillation products of beef tallow. In 1954, it was reported that it was produced in     excess of 10000 tons annually by alkali fission of castor oil (Kadesch RG, J Am Oil     Chem Soc 1954, 31, 568). 
     Sebacic acid and its derivatives, as azelaic acid, have a variety of industrial uses as     plasticizers, lubricants, diffusion pump oils, cosmetics, candles, etc. It is also used in     the synthesis of polyamide, as nylon, and of alkyd resins.
     An isomer, isosebacic acid, has several applications in the manufacture of vinyl resin     plasticizers, extrusion plastics, adhesives, ester lubricants, polyesters, polyurethane     resins and synthetic rubber.  
Dodecanedioic acid (n=10) : that acid is used in the production of nylon (nylon-6,12), polyamides, coatings, adhesives, greases, polyesters, dyestuffs, detergents, flame retardants, and fragrances. It is now produced by fermentation of long-chain alkanes with a specific strain of Candida tropicalis (Kroha K, Inform 2004, 15, 568). Its monounsaturated analogue (traumatic acid) is described below.
Suberic acid, nonanedioic acid (and its mono-unsaturated derivative: 2-nonenedioic acid), decanoic acid (and its mono-unsaturated derivative: 2-decenedioic acid) are present in honey (Schievano et al., J Agric Food Chem 2013, 61, 1747) and are of special interest because they have long been recognized as part of the pheromone system of the honeybee Apis mellifera (Lercker G et al., Lipids 1981, 16, 912). They are produced in the mandibular glands of the queen and the worker honeybees, they regulate their activities in the hive.
It was shown that all these dicarboxylic acids are formed during the drying process of paint oils and that the determination of these decomposition products may be of value in determining the age of old samples.
 The higher weight dicarboxylic acids (n=10 to 21)     are found in different plant lipids, particularly in what was named erroneously Japan     wax (triglycerides containing C20, 21, 22 and 23 dicarboxylic acids besides     normal fatty acids) from the sumach tree (Rhus sp.). Among them, Thapsic     acid (n=14) was isolated from the dried roots of the Mediterranean "deadly     carrot", Thapsia garganica (Umbelliferae), but others, as Brassylic     acid  (n=11), were prepared chemically from different sources.
     Brassylic acid can be produced chemically from erucic acid by ozonolysis but     also by microorganisms (Candida sp) from tridecane.     This diacid is produced on a small commercial scale in Japan for the     manufacture of fragrances.
 A review on the applications and the industrial biotechnology of these molecules has been released by Kroha K (Inform 2004, 15, 568).
A large survey of the dicarboxylic acids present in Mediterranean nuts revealed unusual components (Dembitsky VM et al., Food Chem 2002, 76, 469). A total of 26 minor acids (from 2 in pecan to 8% in peanut) were determined : 8 species derived from butanedioic acid, likely in relation with photosynthesis, and 18 species with a chain from 5 to 22 carbon atoms.
Higher weight acids (>C20) are found in suberin present at vegetal surfaces (outer bark, root epidermis). C16 to C26 a,w-dioic acids are considered as diagnostic for suberin. With C18:1 and C18:2, their content amount from 24 to 45% of whole suberin. They are present at low levels (< 5%) in plant cutin, except in Arabidopsis where their content can be higher than 50% (Pollard Met al., Tr Plant Sci 2008, 13, 236).
The first allenic dicarboxylic acid, named glutinic acid (2,3-pentadienedioic acid) was isolated from Alnus glutinosa (Betulaceae) (Hans EA, Berich Deut Chem Ges 1908, 40, 4760).
It was shown that hyperthermophilic microorganisms specifically contained a large variety of dicarboxylic acids (Carballeira NM et al., J Bacteriol 1997, 179, 2766). This is probably the most important difference between these microorganisms and other marine bacteria. Dioic fatty acids from C16 to C22 were found in an hyperthermophilic archaeon, Pyrococcus furiosus. Short and medium chain (up to 11 carbon atoms) dioic acids have been discovered in Cyanobacteria of the genus Aphanizomenon (Dembitsky VM et al., Biochemistry (Moscow) 2001, 66, 72).
A monounsaturated dicarboxylic acid, traumatic acid, (10E-dodeca-1,12-dicarboxylic acid), was among the first biologically active molecules isolated from plant tissues (English J et al., Science 1939, 90, 329). That dicarboxylic acid was shown to be a potent wound healing agent in plant that stimulates cell division near a wound site (Farmer EE, Plant Mol Biol 1994, 26, 1423), it derives from 18:2 or 18:3 fatty acid hydroperoxides after conversion into oxo fatty acids.

  Traumatic acid
While polyunsaturated fatty acids are unusual in plant cuticles, a diunsaturated dicarboxylic acid has been reported as a component of the surface waxes or polyesters of some plant species. Thus, octadeca-c6,c9-diene-1,18-dioate, a derivative of linoleic acid, is present in Arabidopsis and Brassica napus cuticle (Bonaventure G et al., Plant J 2004, 40, 920).
Dicarboxylic acids were shown in 1934 to be produced by
     w-oxidation of fatty acids during their catabolism (Verkade PE et al., Biochem J 1934, 28, 31). Thus,     these authors have discovered that these compounds appeared in urine after administration     of tricaprin and triundecylin. Although the significance of their biosynthesis remains     poorly understood, it was demonstrated that w-oxidation occurs     in rat liver but at a low rate, needs oxygen, NADPH and cytochrome P450. It was later     shown that this reaction is more important in starving or diabetic animals where 15% of     palmitic acid is subjected to w-oxidation and then to b-oxidation (Wada F et al. Biochim Biophys Acta 1977, 487, 261),     this generates malonyl-coA which is further used in saturated fatty acid synthesis. 
     
     It was proposed recently that dicarboxylic acids are alternate lipid substrates in     parenteral nutrition (Greco AV et al., Clin Nutr 1995, 14, 143). Basically, they     are water soluble, undergo b-oxidation, do not induce     ketogenesis but rather promote gluconeogenesis. They could represent an     immediately     available form of energy. Thus, inorganic salts of sebacic (C10)  and dodecanedioic     (C12) acids were firstly proposed, but now, triglycerides containing these fatty acids are     under investigation (Capristo E et al. Clin Chim Acta 1999, 289, 11).     Treatment of rats with derivatives of  C16 dioic acid have shown that     this compound markedly improved lipid metabolism (Russell JC et al.,     Arterioscl Thromb 1991, 11, 602) and inhibited the development of     advanced cardiovascular disease (Russell JC et al., Arteriocl Thromb Vasc     Biol 1995, 15, 918).   
It must be recalled that the determination of the dicarboxylic acids generated by permanganate-periodate oxidation of monoenoic fatty acids was useful to study the position of the double bond in the carbon chain (Longmuir KJ et al., Anal Biochem 1987, 167, 213).
Long-chain dicarboxylic acids containing vicinal dimethyl branching near the centre of the carbon chain have been discovered in the genus Butyrivibrio, bacteria which participate in the digestion of cellulose in the rumen (Klein RA et al., Biochem J 1979, 183, 691). These fatty acids, named diabolic acids, have a chain length depending on the fatty acid used in the culture medium. The most abundant diabolic acid in Butyrivibrio had a 32-carbon chain length.

     Diabolic acid (15,16-dimethyltriacontanedioic     acid)
These diacids were also detected     in he core lipids of the genus Thermotoga of the order Thermotogales,     bacteria living in solfatara springs, deep-sea marine hydrothermal systems     and high-temperature marine and continental oil fields (Huber R et al.,     Arch Microbiol 1986, 144, 324). It was shown that about 10% of their     lipid fraction were symmetrical C30 to C34 diabolic acids. The C30 (13,14-dimethyloctacosanedioic     acid) and C32 (15,16-dimethyltriacontanedioic     acid) diabolic acids have been described in Thermotoga maritima (Caballeira     NM et al., J Bacteriol 1997, 179, 2766).
     Some parent C29 to C32 diacids but with methyl groups on the carbons C-13     and C-16 have been isolated and characterized from the lipids of     thermophilic anaerobic eubacterium Themanaerobacter ethanolicus (Jung     S et al., J Lipid Res 1994, 35, 1057). The most abundant diacid was the     C30 a,w-13,16-dimethyloctacosanedioic     acid.    
          Biphytanic diacids are present     in geological sediments and are considered as tracers of past anaerobic     oxidation of methane (Birgel D et al., Org Geochem 2008, 39, 152).     Several forms without or with one or two pentacyclic rings have been     detected in Cenozoic seep limestones. These lipids may be unrecognized     metabolites from Archaea.
     
 
     
          
          Crocetin is the core compound of  crocins (crocetin glycosides) which are the     main red pigments of the stigmas of saffron (Crocus sativus) and the     fruits of gardenia (Gardenia jasminoides). Crocetin is a 20-carbon     chain dicarboxylic acid which is a  diterpenenoid and can be considered as a     carotenoid. It was the first plant carotenoid to be recognized as early as     1818 while the history of saffron cultivation reaches back more than 3,000 years. 

 Crocetin
The major active ingredient of saffron is the yellow pigment crocin 2 (three other derivatives with different glycosylations are known) containing a gentiobiose (disaccharide) group at each end of the molecule.

 Crocin
     
     A simple and speccific HPLC-UV method has been developed to quantify the     five major biologically active ingredients of saffron, namely the four     crocins and crocetin (Li N et al., J Chromatogr A 1999, 849, 349).
     2 – Alkylitaconates
     
     Several dicarboxylic acids having an alkyl side chain and an itaconate core     have been isolated from lichens and fungi, itaconic acid (methylenesuccinic     acid) being a metabolite produced by filamentous fungi.
Among these compounds, several analogues, called chaetomellic acids with different chain lengths and degrees of unsaturation have been isolated from various species of the lichen Chaetomella (two of them are shown below).

These molecules were shown to be valuable as basis for the development of anticancer drugs due to their strong farnesyltransferase inhibitory effects (Singh SB et al., Bioorg Med Chem 2000, 8, 571).
In 1999, a series of new fungal alkyl- and alkenyl-itaconates, ceriporic acids, were found in cultures of a selective lignin-degrading fungus (white rot fungus), Ceriporiopsis subvermispora (Enoki M et al., Chem Lett 2000, 54-55, Amirta R et al., Chem Phys Lipids 2003, 126, 121). Two of them are shown below.

It was determined that these ceriporic acids suppressed iron redox reactions to attenuate OH production by the Fenton reaction in the presence of iron reductants such as hydroquinone and cysteine (Enoki M et al., Chem Phys Lipids 2002, 120, 9). It was proposed that the suppression of the cellulolytic active oxygen species, OH, by this metabolite contributes to the selective lignin-degradation with a minimum loss of cellulose. The absolute configuration of ceriporic acids, their stereoselective biosynthetic pathway and the diversity of their metabolites have been largely discussed (Nishimura H et al., Chem Phys Lipids 2009, 159, 77).
FATTY ACID CARBONATES
Carbonates (esters of carbonic acid,     H2CO3) are well known to chemists as they represent an important class of organic compounds and among them oleochemical carbonates have interesting characteristics which make them candidates for many industrial applications. 
     The most common carbonates have the following structure : RO-CO-OR
     R is a linear chain with 8 to 18 carbon atoms, saturated or with one double     bond (dioleyl carbonate), or a branched chain (ethylhexyl, butyloctyl or     hexyldecyl).
     They are miscible in organic solvents but insoluble in water. Unsaturation     or branching on the alkyl chain lowers their melting point (Kenar JA,     Inform 2004, 15, 580). 
     The condensation of phosgene (ClCOCl) with an alcohol appears the most     commonly used procedure to synthesize oleochemical carbonates.
     The polar nature of the carbonate moiety enables it to adhere strongly to     metal surfaces. Thus, they are used as lubricant components which have a     protective property for metal corrosion. Some C8 to C18 carbonates have been     exploited in personal-care products (sunscreen, cosmetics), dioctyl     carbonate being also used as emollient or solvent in UV-filter solutions.
     Extraction of metal ions (gold, silver, platinum) is improved by the use of     the chelating properties of oleochemical carbonates when mixed with the     metal-containing aqueous phase. Future developments will ensure a growing     interest in these molecules. 
     
PHENYL AND BENZOIC ALKANOIC ACIDS
Short chain w-phenylalkanoic     acids have long been known to occur in natural products.
     The simplest one is benzoic acid. This acid is present, free or esterified,     in several plants. 

     Benzoic acid
Appreciable amounts have been found in most berries (around 0.03 to 0.15%). Ripe fruits of several Vaccinium species (Ericaceae) (e.g., cranberry, Vaccinium vitis idaea; bilberry, Vaccinium macrocarpon) contain the highest concentration of free benzoic acid. Gum benzoin, a balsamic resin produced by shrubs (Styrax species) from tropical regions, mainly in Asia, contains up to 20% of benzoic acid and 40% benzoic acid esters. The name "benzoic" is derived from the name of these resins. In perfumery, benzoin is used as a fixative, slowing the dispersion of essential oils into the air.
Phenylacetic,     3-phenylpropanoic and 3-phenylpropenoic (cinnamic) acids are present in     propolis, mammalian exocrine secretions or plant fragrances.
     Cinnamic acid is obtained from cinnamon or from balsam. It is also found in shea     butter. It is used as a component of several flavors and certain pharmaceuticals     (as methyl, ethyl or benzyl esters). 

     Cinnamic acid
Cinnamic acid is formed biosynthetically from phenylalanine and is metabolized through hydroxylation and methylation into various polyphenols with antioxidant properties (caffeic, coumaric, ferulic and sinapic acids). Considering their high polarity, these compounds cannot be considered as true lipids.
During a systematic study of the lipids from seeds of the plant Araceae, Schmid PC et al. (Phytochemistry 1997, 45, 1173) discovered the presence of 13-phenyltridecanoic acid as a major component (5-16% of total fatty acids). Other similar compounds but with 11 and 15 carbon chain lengths and saturated or unsaturated were shown to be also present but in lower amounts. At the same time, the even carbon chain w-phenylalkanoic acids of C10 up to C16 were discovered in halophilic bacteria (Caballeira NM et al., Lipids 1997, 32, 1271).

w-phenylalkanoic acid (x = 1 to 17)
     Later, an exhaustive study of 17 genus of the subfamily Aroideae of Araceae     revealed the presence of three major acids, 11-phenylundecanoic acid,     13-phenyltridecanoic acid and 15-phenylpentadecanoic acid in seed lipids (Meija     J et al., Phytochemistry 2004, 65, 2229).  Other odd carbon number     acids from C7 to C23 were detected but in trace amounts. Similarly, two     series of homologous odd carbon number monounsaturated w-phenylalkanoic     acids were found. 
     Thus, it can be stated that all odd carbon chain w-phenylalkanoic     acids from C1 through C23 have been found in nature. Furthermore, even     carbon chain w-phenylalkanoic     acids from C10 through C16 were also detected.
Two peroxidized isomeric phenylhexadecanoic acids, epiplakinic acids, have been isolated from the Palauan sponge Plakortis nigra (Sandler JS et al., J Nat Prod 2002, 65, 1258). One of them is shown below. Both acids inhibited the HCT-116 human colon tumor cell line.

 Epiplakinic acid
     
     Substituted phenylalkenoic acids are periodically encountered in nature. As an     example, rubrenoic acids were purified from Alteromonas rubra,     compounds which showed bronchodilatatoric properties (Holland GS et al.,     Chem Ind 1984, 850).

Methyl phenylalkenoic acids (5     carbon chain) have been described from a terrestrial Streptomycete (Mukku     VJ et al., Z Naturforsch 2002, 57b, 335).
     Serpentene, a similar polyunsaturated phenylalkenoic acid, is also     produced by  Streptomyces and was shown to have some antibacterial     properties.

Several serpentene-like compounds have also been isolated from the same bacterial source (Wenzel SC et al., J Nat Prod 2004, 67, 1631).
     Several bicyclic derivatives of linolenic acid were shown to be generated by     alkali isomerization      (Matikainen J et al., Tetrahedron Lett 2003, 59, 567).
     

     Bicyclic hexahydroindenoic acid
Some others (alkyl-phenyl)-alkanoic acids) are formed when linolenic acid is warmed at 260270°C (Hase A et al., JAOCS 1978, 55, 407).

Several forms with 20 or 22 carbon atoms were identified in archaeological pottery vessels and were presumed to have been generated during heating of highly unsaturated fatty acids. They were used as biomarkers to trace the ancient processing of marine animal in these vessels (Craig OE et al., PNAS 2011, 108, 17910).
Several benzoic acid derivatives have been described in leaves of various Piperaceae species. Thus, a prenylated benzoic acid acid derivative, crassinervic acid, has been isolated from Piper crassinervium (Lago JH et al., J Nat Prod 2004, 67, 1783).

     Crassinervic acid
Similar compounds were isolated from P. aduncum (aduncumene) and P. gaudichaudianum (gaudichaudianic acid). All these molecules showed high potential as antifungal compounds. A prenylated benzoic acid with a side chain formed of two isoprene units has also been isolated from the leaves of P. aduncum (Baldoqui DC et al., Phytochemistry 1999, 51, 899). More recently, three prenylated benzoic acid derivatives with four isoprene units have been extracted from the leaves of Piper heterophyllum and P. aduncum (Flores N et al., Phytochemistry 2009, 70, 621). These compounds displayed moderate antiplasmodial (against Plasmodium falciparum) and trypanocidal (against Trypanosoma cruzi) activities.
FATTY ACYL-CoA ESTERS
     These fatty acid derivatives may be considered as complex lipids since they     are formed of one fatty acid, a 3′-phospho-AMP linked to phosphorylated     pantothenic acid (vitamin F) and cysteamine. However, to simplify the     nomenclature and taking into account their metabolism, we classify them     within the big group of the fatty acids and their simple derivatives rather     than within the complex and phosphorylated lipids. 
     Long-chain acyl-CoA esters are substrates for a number of important     enzymatic reactions and play a central role in the regulation of metabolism     as allosteric regulators of several enzymes. To     participate in specific metabolic processes, fatty acids must first be     activated by being joined in thioester linkage (R-CO-SCoA) to the -SH group     of coenzyme A. The thioester bond is a high energy bond. 

R = fatty carbon chain
The     activation reaction normally occurs in the endoplasmic reticulum or the     outer mitochondrial membrane. This is an ATP-requiring reaction (fatty acyl-CoA synthase), yielding AMP and pyrophosphate (PPi). Different     enzymes are specific for fatty acids of different chain length. 
     Then, the acyl CoA esters are transported in mitochondria. They     are converted to fatty acyl carnitine by carnitine acyl transferase I,     an enzyme of the inner leaflet of the outer mitochondrial membrane. Fatty     acyl carnitine is then transported by an antiport in exchange for free     carnitine to the inner surface of the inner mitochondrial membrane. There     carnitine acyl transferase II reverses the process, producing fatty     acyl-CoA and carnitine. This shuttle mechanism is required only for longer     chain fatty acids. 
     Once     inside the mitochondrial matrix, the fatty acyl–CoA derivatives     are degraded by a series of reactions that release acetyl-CoA and leads to     the production of NADH and FADH2. There are four steps in fatty acid     oxidation pathway; oxidation, hydration, oxidation, and thiolysis. It     requires 7 rounds of this pathway to degrade palmitate (a C16 fatty acid).
     A graphic chart of these important metabolic steps may be found in the BioCarta     web site.
DIVINYL ETHER FATTY ACIDS
     Fatty acid hydroperoxides generated by plant     lipoxygenases from linoleic and linolenic acids are known to serve as     substrates  for a divinyl ether synthase which produces divinyl ether     fatty acids. Up to date divinyl ethers were detected only within the plant     kingdom.
     The discovery of that class of compounds dates back to 1972, when Galliard     T et al. described the structures of two ether C18 fatty acids generated by     homogenates of the potato tuber (Galliard T et al., Biochem J 1972, 129,     743). These compounds, named colneleic acid (from linoleic acid)     and colnelenic acid (from linolenic acid), could be also produced in     potato leaves and tomato roots by rearrangement of 9-hydroperoxides.

Isomers of colneleic and colnelenic acids were isolated from homogenates of leaves of Clematis vitalba (Ranunculaceae) (Hamberg M, Lipids 2004, 39, 565).
Similarly, 13-lipoxygenase-generated hydroperoxides serve as precursor of other divinyl ether fatty acids which are produced in bulbs of garlic (Grechkin AN et al., FEBS Lett 1995, 371, 159) or Ranunculus leaves (Hamberg M, Lipids 1998, 33, 1061). These compounds were named etheroleic and etherolenic acids.
 
     
The physiological significance of divinyl ethers is still not fully studied. As infection of potato leaves leads to increased levels of divinyl ether synthase, it was suggested that this pathway could be of importance in the defense of plants against attacking pathogens (Göbel C et al., Biochim Biophys Acta 2002, 1584, 55).
 Similar structures have been discovered in the brown alga Laminaria sinclairii, with 18 or 20 carbons and 4, 5 or 6 double bonds (Proteau PJ et al., Lipids 1993, 28, 783), and in the red alga Polyneura latissima, with 20 carbons and 5 double bonds (Jiang ZD et al., Lipids 1997, 32, 231).
Devenez membre et participez au développement de la Lipidomique au XXIème siècle.
S'inscrire